Abstract:Battery management systems increasingly require accurate battery health prognostics under strict on-device constraints. This paper presents DLNet, a practical framework with dual-stage distillation of liquid neural networks that turns a high-capacity model into compact and edge-deployable models for battery health prediction. DLNet first applies Euler discretization to reformulate liquid dynamics for embedded compatibility. It then performs dual-stage knowledge distillation to transfer the teacher model's temporal behavior and recover it after further compression. Pareto-guided selection under joint error-cost objectives retains student models that balance accuracy and efficiency. We evaluate DLNet on a widely used dataset and validate real-device feasibility on an Arduino Nano 33 BLE Sense using int8 deployment. The final deployed student achieves a low error of 0.0066 when predicting battery health over the next 100 cycles, which is 15.4% lower than the teacher model. It reduces the model size from 616 kB to 94 kB with 84.7% reduction and takes 21 ms per inference on the device. These results support a practical smaller wins observation that a small model can match or exceed a large teacher for edge-based prognostics with proper supervision and selection. Beyond batteries, the DLNet framework can extend to other industrial analytics tasks with strict hardware constraints.
Abstract:Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it demands advances at the levels of materials, devices, and systems for the efficient harvesting, storage, conversion, and management of renewable energy. Researchers globally have begun incorporating machine learning (ML) techniques with the aim of accelerating these advances. ML technologies leverage statistical trends in data to build models for prediction of material properties, generation of candidate structures, optimization of processes, among other uses; as a result, they can be incorporated into discovery and development pipelines to accelerate progress. Here we review recent advances in ML-driven energy research, outline current and future challenges, and describe what is required moving forward to best lever ML techniques. To start, we give an overview of key ML concepts. We then introduce a set of key performance indicators to help compare the benefits of different ML-accelerated workflows for energy research. We discuss and evaluate the latest advances in applying ML to the development of energy harvesting (photovoltaics), storage (batteries), conversion (electrocatalysis), and management (smart grids). Finally, we offer an outlook of potential research areas in the energy field that stand to further benefit from the application of ML.